山东如特安防主营:济南气体报警器,天然气报警器,二氧化硫报警器,一氧化碳报警器,氯气报警器,氢气报警器,氨气报警器等有毒/可燃气体报警器 | 联系我们 | 进入老版
全国统一服务热线
18668913066
当前位置: 如特主页 > 资讯中心 > 行业动态

新型室温表面光电压气体传感器装置(二氧化氮气体为测量试验气体)(6)

文章出处:如特安防 人气:发表时间:2018-09-15 13:55:22

Author Contributions
Conceptualization, M.K. and J.S.; Methodology, P.T.; Software, P.T.; Investigation, M.K. and M.A.B.; Writing-Original Draft Preparation, M.K., M.A.B.; Writing-Review & Editing, J.S.; Supervision, M.K., J.S.; Project Administration, M.K, J.S., A.P.; Funding Acquisition, M.K and A.P.
Funding
Works on SPV gas sensor device have been supported by the Project InTechFun realized within the Operational Programme of Innovative Economy-POIG.01.03.01-00-159/08, founded by European Union within the European Regional Development Fund. However, the main part of results presented in this paper have been obtained within the realization of research grant of National Science Centre, Poland, OPUS11-2016/21/B/ST7/02244.
Conflicts of Interest
The authors declare no conflict of interest.
References
References
1.Göpel, W.; Reinhardt, W. Metal Oxide Sensors: New Devices Through Tailoring Interfaces on the Atomic Scale. Sens. Update 1996, 13, 49–120.  
2.Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35.  
3.Comini, E.; Faglia, G.; Sberveglieri, G. (Eds.) Electrical-based Gas Sensing. InSolid State Gas Sensing; Springer: New York, NY, USA, 2009; pp. 47–108. ISBN 978-0-387-09664-3. 
4.Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensor 2010, 10, 5469–5502.   
5.Gardner, J.; Bartlett, P.N. (Eds.) Sensors and Sensory Systems for an Electronic Nose; Kluwer Academic Publisher: Amsterdam, The Netherlands, 1992; ISBN 978-94-015-7985-8. 
6.Patel, H.K. The Electronic Nose: Artificial Olfaction Technology; Springer: New Delhi, India, 2014; ISBN 978-81-322-1547-9. 
7.Korotcenkov, G. Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications; Volume 2: New Trends and Technologies; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-7387-9. 
8.Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A 2017, 267, 242–261.  
9.Leonardi, S.G. Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications. Chemosensors 2017, 5, 17.  
10.Comini, E.; Baratto, C.; Faglia, G.; Ferroni, M.; Vomiero, A.; Sberveglieri, G. Quasi one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Progr. Mater. Sci. 2009, 54, 1–67.  
11.Baratto, C.; Comini, E.; Faglia, G.; Sberveglieri, G. The Power of Nanomaterial Approaches in Gas Sensors. In Solid State Gas Sensors: Industrial Application; Fleischer, M., Lehmann, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 53–78. 
12.Eranna, G. Metal Oxide Nanostructures as Gas Sensing Devices; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398–6340-4. 
13.Carpenter, M.A.; Mathur, S.; Kolmakov, A. Metal Oxide Nanomaterials for Chemical Sensors; Springer: New York, NY, USA, 2012; ISBN: 146145395X, 9781461453956. 
14.Jagadish, C.S. Zinc Oxide: Bulk, Thin Films and Nanostructures; Pearton, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-08-044722-3. 
15.Yao, T. Oxide and Nitride Semiconductors: Processing, Properties and Applications; Hong, S.-K., Ed.; Springer: Berlin, Germany, 2009; ISBN 978-3-540-88846-8. 
16.Comini, E. Metal oxide nanowire chemical sensors: Innovation and quality of life.Mater. Today 2016, 19, 559–567.  
17.Mizsei, J.; Harsanyi, J. Resistivity and work function measurements on Pd-doped SnO2 sensor surface. Sens. Actuators 1983, 4, 397–402.  
18.Mizsei, J.; Lantto, V. Simultaneous response of work function and resistivity of some SnO2-based samples to H2 and H2S. Sens. Actuators B 1991, 4, 163–168.  
19.Mizsei, J. Vibrating capacitor method in the development of semiconductor gas sensors. Thin Solid Films 2005, 490, 17–21.  
20.Oprea, A.; Barsan, N.; Weimar, U. Work function changes in gas sensitive materials: Fundamentals and applications. Sens. Actuators B 2009, 142, 470–493.  
21.Korotcenkov, G.; Cho, B.K. Porous Semiconductors: Advanced Material for Gas Sensor Applications. Crit. Rev. Solid State Mater. Sci. 2010, 35, 1–37.  
22.Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiments, and applications. Surf. Sci. Rep. 1999, 37, 1–206.  
23.Tomkiewicz, P.; Arabasz, S.; Adamowicz, B.; Miczek, M.; Mizsei, J.; Zahn, D.R.T.; Hasegawa, H.; Szuber, J. Surface electronic properties of sulfur-treated GaAs determined by surface photovoltage measurement and its computer simulation. Surf. Sci. 2009, 603, 498–502.  
24.Zhou, H.-S.; Yamada, T.; Asai, K.; Honma, I.; Uchida, H.; Katsube, T. NO Gas Sensor Based on Surface Photovoltage System Fabricated by Self-Ordered Hexagonal Mesoporous Silicate Film. Jpn. J. Appl. Phys. 2001, 40, 7098–7102.  
25.Yamada, T.; Zhou, H.S.; Uchida, H.; Tomita, M.; Ueno, Y.; Honma, I.; Asai, K.; Katsube, T. Application of a cubic-like mesoporous silica film to a surface photovoltage gas sensing system. Microporous Mesoporous Mater. 2002, 54, 269–276.  
26.Yuliarto, B.; Zhou, H.S.; Yamada, T.; Honma, I.; Katsumura, Y.; Ichihara, M. Effect of Tin Addition on Mesoporous Silica Thin Film and Its Application for Surface Photovoltage NO2 Gas Sensor. Anal. Chem. 2004, 76, 6719–6726.   
27.Rothschild, A.; Levakov, A.; Shapira, Y.; Ashkenasy, N.; Komem, Y. Surface photovoltage spectroscopy study of reduced and oxidized nanocrystalline TiO2films. Surf. Sci. 2003, 456–460.  
28.Sivalingam, Y.; Magna, G.; Pomarico, G.; Martinelli, E.; Paolesse, R.; D’Amico, A.; Di Natale, C. Gas effect on the surface photovoltage of porphyrins functionalized ZnO nanorods. Adv. Mater. Lett. 2012, 3, 442–448.  
29.Borysiewicz, M.A.; Dynowska, E.; Kolkovsky, V.; Dyczewski, J.; Wielgus, M.; Kaminska, E.; Piotrowska, A. From porous to dense thin ZnO films through reactive DC sputter deposition onto Si (100) substrates. Phys. Status Solidi A2012, 209, 2463–2469.  
30.Masłyk, M.; Borysiewicz, M.A.; Wzorek, M.; Wojciechowski, T.; Kwoka, M.; Kaminska, E. Influence of absolute argon and oxygen flow values at a constant ratio on the growth of Zn/ZnO nanostructures obtained by DC reactive magnetron sputtering. Appl. Surf. Sci. 2016, 389, 287–293.  
31.Kwoka, M.; Ottaviano, L.; Szuber, J. Comparative analysis of physicochemical and gas sensing characteristics of two different forms of SnO2 films. Appl. Surf. Sci. 2017, 401, 256–261.  
32.Kwoka, M.; Lyson-Sypien, B.; Kulis, A.; Maslyk, M.; Borysiewicz, M.A.; Kaminska, E.; Szuber, J. Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering. Materials2018, 11, 131.   
33.Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Mnilenberger, G.E.Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer: Eden Prairie, MN, USA, 1979.  
34.Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Perkin-Elmer: Eden Prairie, MN, USA, 1992. 
35.Watts, J.F.; Wolstenholme, J. An Introduction to Surface Analysis by XPS and AES; Wiley and Sons: Chichester, UK, 2003; ISBN 978-0-470-84713-8. 
36.Gazia, R.; Chiodoni, A.; Bianco, S.; Lamberti, A.; Quaglio, M.; Sacco, A.; Tresso, E.; Mandracci, P.; Pirri, C.F. An easy method for the room-temperature growth of spongelike nanostructured Zn films as initial step for the fabrication of nanostructured ZnO. Thin Solid Films 2012, 524, 107–112.  
NIST X-ray Photoelectron Spectroscopy Database. Available online: https://srdata.nist.gov/xps/ (accessed on 27 July 2018).





原著:M.Kwoka,OrcID, Michal A. Borysiewicz, P. Tomkiewicz, A. Piotrowska,J. Szuber  2018.6.29
本文由山东如特安防设备有限公司LK编译,转载必须注明来自 sdrtkm.com
 

    本文版权:所有,转载需注明出处:sdrtkm.com

    本文标签字:气体敏感材料,二氧化氮气    室温气体传感器    表面光电压效应    多气孔的ZnO纳米结构薄   

同类文章排行

最新资讯文章



如特安防手机版网站二维码